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Abstract: High-permittivity Ba(Eu1/5Sm1/5Nd1/5Pr1/5La1/5)2Ti4O12 (BESNPLT) high-entropy ce-
ramics (HECs) were synthesized via a solid-state route. The microstructure, sintering behavior,
phase structure, vibration modes, and microwave dielectric characteristics of the BESNPLT HECs
were thoroughly investigated. The phase structure of the BESNPLT HECs was confirmed to be a
single-phase orthorhombic tungsten-bronze-type structure of Pnma space group. Permittivity (εr)
was primarily influenced by polarizability and relative density. The quality factor (Q×f ) exhibited
a significant correlation with packing fraction, whereas the temperature coefficient (TCF) of the
BESNPLT HECs closely depended on the tolerance factor and bond valence of B-site. The BESNPLT
HECs sintered at 1400 ◦C, demonstrating high relative density (>97%) and optimum microwave
dielectric characteristics with TCF = +38.9 ppm/◦C, Q×f = 8069 GHz (@6.1 GHz), and εr = 87.26.
This study indicates that high-entropy strategy was an efficient route in modifying the dielectric
characteristics of tungsten-bronze-type microwave ceramics.

Keywords: microwave dielectric characteristics; tungsten-bronze-type ceramics; high-entropy ceramics;
Raman spectroscopy

1. Introduction

As vital materials for microwave transmission lines, oscillators, dielectric antennas,
dielectric resonators, and filters utilized in wireless fidelity (WIFI), global positioning
system (GPS), Bluetooth, wireless local area network (WLAN), and 5G/6G communication
systems, microwave dielectric ceramics (MWDCs) have attracted sustained attention from
researchers [1–5]. In these applications, the microwave dielectric characteristics of MWDC
must be considered, including permittivity (εr), quality factor (Q×f, Q = 1/tanδ), and
temperature coefficient (TCF or τf) [6–8]. In particular, a suitable εr is required, as well as a
near-zero TCF and a high Q×f [9–11]. However, the simultaneous achievement of high εr,
near-zero TCF, and high Q×f value represents a significant challenge in the field of MWDC.

Recently, the idea of high entropy was applied to functional ceramics, giving rise
to the emergence of high-entropy ceramics (HECs) [12,13]. These new materials are sin-
gle phase, comprising a minimum of five anions and/or cations occupying a single site
within the crystal [14,15]. Extensive research has been conducted on HECs in order to
enhance their properties [16]. HECs with low thermal conductivity [17], excellent mechan-
ical properties [18], dielectric properties [19], piezoelectric properties [20], ferroelectric
properties [21], and corrosion resistance [22] could be fabricated by precisely adjusting
the composition within a wide range. These HECs have promising potential for various
applications, including piezoelectricity [23], thermal barrier coatings [24], and energy stor-
age [25]. Considering that dielectric properties of MWDC are highly sensitive to even
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the slightest alterations in structure and composition, high-entropy strategy might offer
a novel methodology for tuning the dielectric characteristics. Xiang et al. [26] initially
documented the finding of a high-entropy Li(Lu0.2Yb0.2Er0.2Ho0.2Gd0.2)GeO4 MWDC with
an orthorhombic olivine structure. Subsequently, numerous other high-entropy MWDC
exhibiting optimal dielectric characteristics have been investigated [27–35]. Chen et al. [27]
designed and synthesized (Hf1/4Zr1/4Sn1/4Ti1/4)O2 HECs, and Q×f increased significantly
from 20,026 to 74,600 GHz by introduction of Hf4+ and Sn4+ into ZrTiO4. According to
Lin et al. [28], the TCF of SrLaAlO4 MWDC could be adjusted from −32 to −6 ppm/◦C
via the introduction of equimolar Eu, Gd, Nd, and Sm in the La-site. Lai et al. [29]
successfully synthesized non-equimolar (Mg1/5Co1/5Ni1/5Li2/5Zn1/5)Al2O4 HECs with
TCF = −64 ppm/◦C, Q×f = 58,200 GHz, and εr = 7.4. The above research mainly focuses
on medium permittivity and ow-permittivity high-entropy MWDC, while there are scarce
reports regarding high-entropy, high-permittivity, tungsten-bronze-type MWDC.

Previous investigations have demonstrated that BaLa2Ti4O12 MWDC with a tungsten-
bronze-type structure exhibits high permittivity (εr = 95.6) for miniaturized device applica-
tions. However, low-Q×f value (2102 GHz) and high-positive TCF (+352 ppm/◦C) restrict
its practical application [36]. Inspired by the concept of high entropy, the equimolar Eu3+,
Sm3+, Nd3+, and Pr3+ cations were incorporated into the A1-site (La-site) of BaLa2Ti4O12
MWDC, forming HECs (with the nominal composition Ba(Eu1/5Sm1/5Nd1/5Pr1/5La1/5)2Ti4
O12 to improve the Q×f and temperature stability. In this work, Ba(Eu1/5Sm1/5Nd1/5Pr1/5
La1/5)2Ti4O12 (abbreviated as BESNPLT) HECs were fabricated through a solid-state route,
and the microstructure, sintering behavior, phase structure, vibration modes, and mi-
crowave dielectric characteristics of the BESNPLT HECs were thoroughly investigated.
The polarizability per molar volume (αthe/Vm), packing fraction (P.F.), tolerance factor (t),
and B-site bond valence (VB) were analyzed to determine the relationship between the
microwave dielectric characteristics of the BESNPLT HECs.

2. Materials and Methods

Ba(Eu1/5Sm1/5Nd1/5Pr1/5La1/5)2Ti4O12 HECs were synthesized through a solid-state
route utilizing Eu2O3 (99.99%), Nd2O3 (99.99%), Pr6O11 (99.9%), Sm2O3 (99.99%), La2O3
(99.99%), BaCO3 (99.8%), and TiO2 (99.84%). To remove moisture from the powders, Pr6O11
was calcined for three hours at 600 ◦C, while Eu2O3, Nd2O3, La2O3, and Sm2O3 were
calcined for the same period at 900 ◦C. The initial oxide and carbonate were weighed in
accordance with the stoichiometry of Ba(Eu1/5Sm1/5Nd1/5Pr1/5La1/5)2Ti4O12 (BESNPLT)
and then were wet-milled in nylon jars (with deionized water and ZrO2 balls) using a
speed of 280 rpm for 2 h. The mixed powders were dried at 120 ◦C/8 h and calcined at
1175 ◦C/3 h to synthesize BESNPLT powder. Following calcination, the BESNPLT powder
was subjected to a second wet-milling process and subsequently dried at 120 ◦C/8 h. The
BESNPLT powder was combined with PVA (10 wt %) and pressed into cylindrical billets
and flake billets. Finally, the BLPNSET billets (cylindrical and flake) were sintered at
1350–1500 ◦C/4 h.

The bulk density of the BESNPLT HECs was measured by the Archimedean drainage
method. The phase structure of the BESNPLT ceramic was determined utilizing a BRUKER
X-ray diffraction (XRD, USA, D8 advance), which has a detection range of 10◦–90◦. The
evaluation of the natural, sintered surface of the BESNPLT ceramic specimens was con-
ducted employing a ZEISS Scanning Electron Microscope (SEM, GEMINI300). The element
distribution of the ceramic specimens was implemented via the utilization of an energy
dispersive spectrometer (EDS, Oxford, X-MAX 50, UK). Raman spectra (50~850 cm−1) of
the BESNPLT HECs were obtained using a Alpha300R Raman scattering spectrometer
(WITec, λ = 532 nm). Microwave dielectric characteristics of the BESNPLT HECs were
evaluated at 5–6 GHz utilizing a P9375A network analyzer (USA, 0.3 MHz–26.5 GHz,
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Keysight) through the application of the Hakki–Coleman method [37]. The temperature
coefficient (TCF) was determined using Equation (1):

TCF =
( f90 − f30)× 106

(90 − 30) f30
(ppm/◦C) (1)

where f 90 and f 30 represent the resonant frequency at 90 ◦C and 30 ◦C, respectively.

3. Results and Discussion

The XRD patterns of the BESNPLT HECs sintered at varying temperatures
(1350–1500 ◦C) are recorded in Figure 1. BESNPLT HECs consist of Sm3+ (1.079 Å), Eu3+

(1.066 Å), Pr3+ (1.126 Å), Nd3+ (1.109 Å), and La3+ (1.16 Å) in equal molar ratios, and its
average ionic radius of lanthanide elements (1.108 Å) is close to that of Nd3+ (1.109 Å) [38].
It is, therefore, anticipated that the positions of the diffraction peaks will align closely with
those of BaNd2Ti4O12, as illustrated in Figure 1. The observed diffraction peaks of the
BESNPLT specimens align with BaNd2Ti4O12 (PDF#44–0061), and no additional peaks are
detected, indicating that the BESNPLT HECs form an orthorhombic tungsten-bronze-type
phase with Pnma space group.
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Figure 1. XRD patterns of BESNPLT HECs sintered at 1350–1500 ◦C.

To gain a comprehensive insight into the structural characteristics of the BESNPLT
HECs, Rietveld refinements were conducted utilizing GSAS application [39,40], with the
XRD data (2θ = 10–90◦) obtained from BESNPLT specimens that had been sintered at
1400 ◦C. The homotopic Ba4.5Nd9Ti18O54 structure (ICSD # 95269) is employed in an
initial model [41], and corresponding refined results for BESNPLT HECs are illustrated in
Figure 2a and Table 1. There was satisfactory concordance between the fitted (black solid
line) and observed patterns (red dot) with low values of Rp = 7.29%, Rwp = 9.18%, and
χ2 = 2.015 (Figure 2a and Table 1). The calculated cell volume (V) of the BESNPLT HECs
sintered at 1400 ◦C is 2100.788 Å3 (a = 22.3607 Å, b = 7.6992 Å, c = 12.2024 Å). Figure 2b
presents a structural diagram of the BESNPLT HECs projected along [001]. As depicted in
Figure 2b, tungsten-bronze-type BESNPLT HECs comprises a three-dimensional framework
of a vertex-sharing Ti-O octahedron interconnected at the vertices to yield three distinct
types of cavities: small triangular cavities (C), diamond cavities (A1), and pentagonal
cavities (A2) [42]. The small triangular cavities (C-site) are empty. The Ba2+ cations occupy
the large pentagonal cavities (A2-site), whereas the remaining Ba2+ ions are distributed
among the diamond cavities (A1-site), sharing these with the lanthanides (Sm3+, Eu3+, Pr3+,
Nd3+, and La3+).
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Table 1. The refinement parameters of BESNPLT HECs.

BLPNSET 1350 ◦C 1400 ◦C 1450 ◦C 1500 ◦C

a (Å) 22.3557 22.3607 22.3667 22.3747
b (Å) 7.7011 7.6992 7.7009 7.7005
c (Å) 12.2031 12.2024 12.2048 12.2061

V (Å3) 2100.934 2100.788 2102.217 2103.079
α = β = γ 90 90 90 90

Rp (%) 6.65 7.29 7.33 6.92
Rwp (%) 8.48 9.18 9.44 8.96
χ2 (%) 1.739 2.015 2.05 2.19

ρtheo (g/cm3) 5.7559 5.7563 5.7524 5.7501

Raman spectroscopy represents an effective methodology for the reflection of phase
structural characteristics, cation distribution, and the identification of the defects of
MWDC through the detection of bond vibration characteristics [43]. The theoretically
Raman-active modes of Ba4.5Nd9Ti18O54 with a Pnma space group are 258
(ΓRaman = 73Ag + 56B1g + 73B2g + 56B3g). BESNPLT HECs with an identical space group
(Pnma) also exhibit analogous Raman-active modes. However, the actual measurement of
Raman-active modes was found to be less than the theoretical value, which was influenced
by a number of factors, including peak overlap, background, and low intensity [44,45].
The Raman spectra (50 cm−1 ~ 850 cm−1) of the BESNPLT HECs at varying temperatures
(1350–1500 ◦C) are illustrated in Figure 3, and 13 Raman-active modes (around 80, 115,
133, 181, 231, 279, 298, 330, 404, 432, 530, 592, and 751 cm−1, respectively) can be identi-
fied. As illustrated in Figure 3, the Raman-active modes remained largely unaltered with
increased temperature, demonstrating that the structure of the BESNPLT HECs remained
stable within the sintering temperature (S.T.) range. The Raman-active modes (80, 115, 133,
and 181 cm−1) within 50–200 cm−1 are associated with the A1 and A2-site cation (Ba2+,
Sm3+, Eu3+, Pr3+, Nd3+, and La3+) translation of the BESNPLT HECs [46]. The modes (231,
279, 298, and 330 cm−1) within the 200–400 cm−1 are derived from the rotation and tilt of
titanium–oxygen (Ti-O) octahedron [47]. The Raman-active modes at 404 and 432 cm−1 are
ascribed to bending the vibration of the titanium–oxygen bond [48]. The modes at 530 (Ag)
and 592 cm−1 (B1g) have been identified as stretching the vibration of the titanium–oxygen
bond. The Raman-active mode at 751 cm−1 shows a correlation with second-order scat-
tering [49]. Furthermore, Raman spectroscopic analysis has confirmed the formation of
tungsten-bronze-type BESNPLT HECs.
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Figure 3. Raman spectra of BESNPLT HECs sintered at varying temperatures.

Figure 4 exhibits the relative density (ρre) and bulk density (ρbu) of the BESNPLT HECs
at varying temperatures (1350–1500 ◦C). The ρre of the BESNPLT HECs could be evaluated
through Equation (2):

ρre =
ρbu
ρth

× 100% (2)

where ρre represents the theoretical density, with the value calculated using XRD refine-
ment data presented in Table 1. As the S.T. increases, the ρbu of the BESNPLT HECs
increases, achieving a maximum of 5.603 g/cm3 at 1400 ◦C (97.34% of the theoretical value
of 5.756 g/cm3). Thereafter, the ρbu decreases as the S.T. exceeds 1400 ◦C.
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Figure 4. ρre and ρbu of BESNPLT HECs sintered at 1350–1500 ◦C.

SEM photographs of the as-fired BESNPLT HECs at varying temperatures
(1350–1500 ◦C) are represented in Figure 5a–d. The grains of the BESNPLT HECs were
observed to exhibit a rod-like morphology that was in accordance with the known char-
acteristics of tungsten-bronze-type Ba6-3xR8+2xTi18O54 (BRT, R = Sm, Nd, La, and Pr) ce-
ramics [46–49]. As the S.T. rises, the average grain size of the BESNPLT HECs increases
markedly as a consequence of grain growth. The formation of the uniform and dense
(ρre > 95%) surface morphology of the BESNPLT HECs (see Figure 5a–c) was observed at
1350–1450 ◦C. Nevertheless, a further increase in the S.T. caused the formation of abnormal
grains, characterized by the presence of pores (see Figure 5d). As illustrated in Figure 6,
the EDS mapping demonstrates a highly uniform distribution of Sm3+, Eu3+, Pr3+, Nd3+,
and La3+, indicating that the lanthanide ions have succeeded in entering the A1-site in the
crystal lattice. According to the EDS analysis results, the barium, titanium, oxygen, and



Crystals 2024, 14, 754 6 of 12

lanthanide elements were consistent with the stoichiometry of the BESNPLT HECs, and the
contents of the lanthanide elements (Eu3+, Sm3+, Nd3+, Pr3+, and La3+) could be regarded
as approaching equimolar proportions, with a ratio of 1.97:2.06:2.1:2.03:2.03. Consistent
with the XRD and Raman analysis results, the EDS analysis also confirms the formation of
the BESNPLT HEC’s solid solution.
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The measured εr and ρre of the BESNPLT HECs at varying temperatures (1350–1500 ◦C)
are illustrated in Figure 7a. As the S.T. increased, the measured εr of the BESNPLT HECs
exhibited an initial increase from 85.96 to 87.26, followed by a subsequent decrease to
82.68. The tendency for the measured εr of the BESNPLT HECs to align with that of ρre
indicates that density played a pivotal role in determining permittivity. The polarizability
per molar volume (αthe/Vm) and porosity-corrected permittivity (εcor) of the BESNPLT
HECs are presented in Figure 7b. The εcor values were determined using Equation (3) [50]:

εcor = εr(1.5p + 1) (3)

where p represents porosity determined from ρre (p = 1 − ρre). The αthe/Vm values were
calculated using the Clausius–Mosotti formula, as outlined in Equation (4) [51]:

αthe
Vm

=
3(εr − 1)

4π(εr + 2)
(4)

where Vm represents molar volume (Vm = V/Z, Z = 2 in BESNPLT HECs). The theoretical
polarizability (αthe) of the BESNPLT HECs was determined using Equation (5) [51]:

αthe(BESNPLT) = 4.5α(Ba2+) + 1.8α(La3+) + 1.8α(Pr3+) + 1.8(Nd3+) +
1.8α(Sm3+) + 1.8α(Eu3+) + 54α(O2−) + 18α(Ti4+)

(5)

where α(Eu3+) = 4.53 Å3, α(Sm3+) = 4.74 Å3, α(Pr3+) = 5.32 Å3, α(La3+) = 6.07 Å3,
α(Nd3+) = 5.01 Å3, α(Ba2+) = 6.4 Å3, α(O2−) = 2.01 Å3, and α(Ti4+) = 2.93 Å3.
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Furthermore, a direct proportional relationship was observed between εcor and αthe/Vm
when the latter was considered as a single variable. As displayed in Figure 7b, αthe/Vm
increases from 0.22493 (1350 ◦C) to 0.22495 (1400 ◦C) and then decreases to 0.2247 (1500 ◦C),
explaining the change in the εcor. The results demonstrate that the key factors influencing
the permittivity of the BESNPLT HECs are the αthe/Vm and density.

Figure 8a illustrates the Q×f and ρre of the BESNPLT HECs sintered at varying temper-
atures (1350–1500 ◦C). As presented in Figure 8a, Q×f demonstrates a slight increase from
7812 GHz to 8069 GHz as the S.T. rises from 1350 ◦C to 1400 ◦C. However, when the S.T. is
further increased to 1500 ◦C, a notable reduction in the Q×f is observed. Dielectric loss
(tanδ = 1/Q) measured at the microwave band of ceramic materials is primarily influenced
by intrinsic factors, including the lattice vibration, atomic packing fraction, and lattice
energy, along with extrinsic factors such as microstructure, density, and lattice defects. A
comparable trend was identified in the variation of Q×f in comparison to ρre (as illustrated
in Figure 8a), implying that density had a significant impact on the Q×f values of the
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BESNPLT HECs. In addition, the influence of the packing fraction (P.F.) on Q×f should be
considered. The P.F. of the BESNPLT HECs could be determined through Equation (6) [52]:

P.F.(%) =Packed ions volume
Unit cell volume × Z

=
4π
3 [4.5r3

Ba+1.8(r3
Eu+r3

Sm+r3
Nd+r3

Pr+r3
La)+18r3

Ti+54r3
O]

V × 2
(6)

where rBa (1.52 Å), rEu (1.066 Å), rSm (1.079 Å), rNd (1.109 Å), rPr (1.126 Å), rLa (1.16 Å), rO
(1.4 Å), and rTi (0.605 Å) are ionic radii of the BESNPLT HECs. The increase in the P.F. of
the microwave dielectric ceramics was found to be correlated with a reduction in lattice
and non-harmonic vibration, which resulted in an enhancement of Q×f. As illustrated in
Figure 8b, the variation of Q×f for the BESNPLT HECs was aligned with that of the P.F.
Therefore, the density and P.F are the key factors in determining the Q×f of the BESNPLT
HECs.
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In general, the TCF of the tungsten-bronze-type BRT (R represents the lanthanides)
ceramics was found to be influenced by a number of factors, including the composition, the
second phase, bond valence, and the tilt of Ti–O octahedron [53–55]. Figure 9a illustrates
the TCF and B-site (Ti-site) bond valence (VB) of the BESNPLT HECs as a function of the S.T.
As the S.T. increased, the TCF of the BESNPLT HECs demonstrated a slight decrease from
39.7 to 38.9 ppm/◦C, which was subsequently followed by an increase to 47.9 ppm/◦C.
The VB of the BESNPLT HECs at varying temperatures (1350–1500 ◦C) is evaluated through
Equations (7) and (8) [28]:

Vjk = ∑
k

vjk (7)

vjk = exp
[Rjk − djk

0.37

]
(8)

where Rjk represents bond valence parameter, and djk denotes bond length. The decreasing
degree of tilting on the Ti–O octahedron resulted in an increase in the TCF. Additionally, the
degree of tilting observed in the Ti–O octahedron was influenced by the length and strength
of the bonds between the oxygen and Ti-site cation. Accordingly, the degree of tilting on
the Ti–O octahedron can be determined by the bond valence of the Ti-site cation, and the
VB of the BESNPLT HECs at varying temperatures demonstrated an inverse variation in
the TCF, as illustrated in Figure 9a.



Crystals 2024, 14, 754 9 of 12

The tolerance factor (t) was found to be significantly correlated with the degree of tilt-
ing on the Ti–O octahedron in the tungsten-bronze-type BRT (R represents the lanthanides)
MWDC. The t of the BESNPLT HECs could be determined using Equation (9):

t =
[0.18 (REu3+ + RSm3+ + RNd3+ + RPr3+ + RLa3+)+0.1 RBa2+ ] + RO2−√

2(RTi4+ + RO2−)
(9)

where R2+
Ba (1.52 Å), R3+

Eu (1.066 Å), R3+
Sm (1.079 Å), R3+

Nd (1.109 Å), R3+
Pr (1.126 Å), R3+

La
(1.16 Å), R2−

O (1.4 Å), and R4+
Ti (0.605 Å) are the ionic radii of the BESNPLT HECs. Figure 9b

presents the TCF and t of the BaLa2Ti4O12 (BLT) [36], BaPr2Ti4O12 (BPT) [56], BaNd2Ti4O12
(BNT) [57], BaSm2Ti4O12 (BST) [58], and BESNPLT ceramics. As t decreased, the degree
of tilting on the Ti–O octahedron increased, resulting in a reduction in the TCF of the
BaR2Ti4O12 (R = lanthanides) ceramics. The TCF of the BESNPLT HECs could be adjusted
to an appropriate value (+38.9 ppm/◦C) through high-entropy design.
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4. Conclusions

In this study, high-permittivity BESNPLT HECs were successfully produced using
the concept of high entropy by a solid-phase reaction route. The results of the XRD and
Raman analysis demonstrated that the BESNPLT HECs belonged to a single-phase tungsten-
bronze-type structure with a Pnma space group within the S.T. range of 1350–1500 ◦C.
The EDS mapping demonstrated that the distributions of the five lanthanide elements
(Eu3+, Sm3+, Nd3+, Pr3+, and La3+) were uniform in the BESNPLT HECs, confirming the
formation of the BESNPLT solid solution. The microwave dielectric characteristics of
the BESNPLT HECs were significantly influenced by a number of factors, including the
polarizability, relative density, packing fraction, tolerance factor, and bond valence of the B-
site (Ti-site). Specifically, the BESNPLT HECs achieved superior dielectric performances of
TCF = +38.9 ppm/◦C, Q×f = 8069 GHz (@6.1 GHz), and εr = 87.26. The present study has
established a paradigm to optimize the dielectric characteristics of tungsten-bronze-type
MWDC utilizing a high-entropy strategy.
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